

Fachseminar

Richtige Aushärtung von Harz-Härter-Systemen Teil II

Inhalt

Das Fachseminar zur richtigen Aushärtung von Harz-Härter-Systemen bietet sowohl eine Auffrischung als auch eine Erweiterung des Fachwissens rund um reaktive Kunststoffe. Es richtet sich gleichermaßen an den Einsteiger und an den erfahrenen Werkstoffingenieur und konzentriert sich auf die am weitesten verbreiteten Epoxid-, ungesättigten Polyester- und Vinylesterharze, die als Basiswerkstoffe für Hochtechnologieanwendungen in vielen Industriebereichen eingesetzt werden.

Der thematische Schwerpunkt von Teil II des Fachseminars liegt auf den mechanischen Charakterisierungsmethoden dynamisch-mechanische Analyse DMA, dynamische und oszillierende Rheologie sowie der Online-Prozesskontrolle. Daneben werden die Möglichkeiten der reaktionskinetischen Beschreibung für die Prozessoptimierung vorgestellt. Die Ultraschall-Prozesskontrolle wird unter Verwendung des Gerätesystems GZ US-Plus im praktischen Einsatz demonstriert. Vorhandene Muster und Materialien können für eine praktische Erprobung der Ultraschall-Prozesskontrolle mitgebracht werden. Eigene DMA-Messkurven oder Netzsch-Messdateien werden gerne gemeinsam diskutiert.

Nicht zuletzt bietet das Seminar die Gelegenheit, Kontakte zu knüpfen und Fragen zu Problemen der täglichen Anwendung im Bereich der Aushärtung von Faser-Kunststoff-Verbunden zu besprechen und Erfahrungen mit anderen Anwendern auszutauschen. Die Gespräche werden bei einem gemeinsamen Abendessen in angenehmer Atmosphäre fortgesetzt.

Ergänzender Hinweis:

Das Fachseminar Teil I ist nicht Voraussetzung für die Teilnahme am Fachseminar Teil II.

Fachseminar

Richtige Aushärtung von Harz-Härter-Systemen Teil II

Programm

1. Veranstaltungstag		2. Veranstaltungstag	
11:00	Begrüßung und Vorwort	09:00	Online-Prozesskontrolle (Ultraschall)
	 Vorstellung des Dozenten 		 Physikalische Grundlagen
	 Vorstellung der Teilnehmer 		 Ultraschallsensoren
	Aktuelle Fragestellungen		 Anwendungsbeispiele und
12:00	Mittagspause		Demonstration
13:00	DMA	10:30	Pause
	 Messung Glas-Gummi-Übergang 	10:45	Online-Prozesskontrolle (Dielektrik)
	 Glastemperatur 		 Physikalische Grundlagen
	 Abbildung des Aushärteprozesses 		 Dielektrik-Sensoren
	 Kontrolle des Aushärtegrads 		 Anwendungsbeispiele
14:00	Pause	12:15	Mittagspause
14:15	Rheologie	13:15	Simulation des Aushärteverlaufs
	 Viskosität 		 Reaktionsgleichungen
	 Gelierung 		 DSC-Basismessungen
15:15	Pause		 Auffinden der Modellparameter
15:30	TMA und Volumendilatometrie		 Vorhersagegenauigkeit
	Therm. Ausdehnungskoeffizient	14:30	Pause
	 Härtungsschrumpf 	14:45	Gemeinsame DSC-Messungen
	 Bestimmung der Glastemperatur 		 Praktische Durchführung am Gerät
17:00	Zusammenfassung		 Gemeinsame Auswertung
18:00	Gemeinsames Abendessen	16:00	Diskussion und Schlusswort

Seminargebühren

- EUR 1.190,00 zzgl. MwSt. inkl. Verpflegung, Abendessen und ausführlichen Seminarunterlagen
- EUR 1.090,00 zzgl. MwSt. für Mitglieder von Composites United e.V. (Nachweis erforderlich)
- EUR 1.090,00 zzgl. MwSt. für studentische / wissenschaftliche Mitarbeiter (Nachweis erforderlich)

Weitere Informationen

Zielgruppe: Berufsanfänger, Werkstoffexperten, Konstrukteure, Techniker, Laboranten
 Methodik: Vorträge, Tutorien, Fallbeispiele aus der Praxis, individuelle Betreuung
 Teilnehmerzahl: Mindestens drei Teilnehmer, maximal zwölf Teilnehmer
 Anmeldung: https://grassezur.de/de/fachseminare

